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a b s t r a c t

In this paper we study a location problem on networks that combines three important
issues: (1) it considers that facilities are extensive, (2) it handles simultaneously the
location of more than one facility, and (3) it incorporates reliability aspects related to the
fact that facilities may fail. The problem consists of locating two path-shaped facilities
minimizing the expected service cost in the long run, assuming that paths may become
unavailable and their failure probabilities are known in advance.Wediscuss several aspects
of the computational complexity of problems of locating two or more reliable paths on
graphs, showing that multifacility path location – with and without reliability issues – is a
difficult problem even for 2 facilities and on very special classes of graphs. In view of this,
we focus on trees and provide a polynomial time algorithm that solves the 2 unreliable
path location problem on tree networks in O(n2) time, where n is the number of vertices.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important strategic decisions in the design of infrastructures is the location of facilities. This has
motivated a lot of research on different facility location problems during many years (see, e.g., [1,2]) and, in particular,
on several extensive path- or tree-shaped facility location problems (see [3–7] and the references therein).

There are several sources of uncertainty that must be considered when facing a location problem. Costs, customer
demands or production capacities may be unknown at the moment of making a decision. A different uncertainty aspect
maybe related to facilities themselves that may disrupt due to unexpected events. This gives rise to situations where some
facilities become temporarily unavailable to provide service to customers, due to system failures, natural disasters, terrorist
attacks, labor strikes, etc. Modeling issues should handle as best as they can these unknown or unpredictable situations
whenever they occur.

Realistically, no decision-maker would accept a solution with very high operating costs just to hedge against very rare
facility disruptions, unless high penalties must be paid to costumers in case of uncovered service. Failures typically result
in extra transportation costs, as customers originally served by the closest facilities must be redirected to more distant
ones (see, e.g., [8]). In order to balance the normal and failure operation costs, the facility location should depend on
how likely facilities may get disrupted, as well as, on their closeness to the potential customers. This has motivated an
alternative approach to the ‘‘customer-to-closest facility cost’’ criterion that consists of locating facilities that minimize the
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total expected service cost in the long run, assuming that failures are accidental, and their probabilities can be estimated in
advance [9,10]. Needless to say, this approach is not unique and another way tomodel disruption is to consider it motivated
by intentional attacks [11–13]. Although these models are very interesting, they are beyond the scope of this paper.

The literature in the area of reliable location models can be traced back, at least, to the paper [14], where both a median
and a center objective functions are considered, and the situation where a fixed number of facilities might fail is tackled.
However, one can observe that the current interest in reliability issues in location problems has been recently restarted
with [15] and other works by the same authors. In addition, the following papers [9,16,17] have also contributed decisively
to this increasing interest. Robustness analysis of transportation networks has been also widely studied in the literature
from alternative points of view (see, e.g., [18–23]).

As can be seen from the literature review, there are models that consider reliability aspects of point location and some
other models that apply integer programming tools to design routes, but one does not find reliability models for the
simultaneous location of extensive facilities. The goal of this paper is to combine three crucial aspects of location models:
(i) the existence of more than one service facility; (ii) the assumption of the extensive nature of service facilities (frequently
more realistic than the assumption of point facilities); (iii) the minimization of the total expected service cost in the long
run, assuming that failures are accidental and their probabilities are known. In particular, referring to (i) and (ii), we point
out that there are few papers in the literature that consider the problem of locating two or more path-shaped facilities on
networks. The combination of the three above aspects makes the location problem studied in this paper even more difficult
under the computational complexity viewpoint, also for graphs with a very simple structure. We discuss several aspects
related to the computational complexity of problems that are strictly related to our unreliable path location problem and, in
fact, are special cases of it. We show that multiple facility path location problems are NP-Hard even on very simple classes
of graphs, implying that the same holds for our reliability problem. This suggests that there is little hope to solve even the
two unreliable path location problem on networks more general than a tree.

In view of the above considerations, we focus on trees and study the following problem: given two path-shaped facilities
that may fail with given probabilities, find two paths in the tree where the two facilities can be located in order to minimize
the total expected service cost. Here we assume that each customer is first assigned to its closest facility, then, if this fails,
to the second closest, and, if both facilities fail, he/she is assigned to a backup facility modeled by a penalty cost. Assuming
that the tree has n vertices, the problem can be solved by brute force by evaluating the objective function on each of the
O(n4) different pairs of paths of the tree. Since each evaluation can be done in linear time, this approach would lead to an
overall complexity of O(n5) time. In spite of that, in this paper we present an O(n2) time complexity algorithm for solving
this problem. It is also worth noticing that our complexity result for locating two paths on a tree equals the one obtained
by [9] for the corresponding two points location problem.

Although the multiple unreliable path location problem studied in this paper can be considered as a natural extension
of the point location version already analyzed in [9], some additional issues arise when handling pairs of paths instead of
pairs of points. As we will see, this requires new algorithmic solutions, in particular for an efficient evaluation of pairs of
intersecting paths.

The paper is organized as follows. In Section 2 we provide some notation and definitions, while basic properties are
introduced in Section 3. In Section 4 we discuss the computational complexity of the problem of locating K ≥ 1 paths on
networks also in the case of unreliable paths. Section 5 illustrates the algorithm for solving the two path-shaped facilities
location problem with probabilities of failure. In Section 6 we discuss further extensions and draw some conclusions.

2. Notation and definitions

Let T = (V , E) be a tree with |V | = n. Suppose that a positive real length ℓ(e) = ℓ(u, v) is assigned to each edge
e = (u, v) ∈ E. Let A(T ) denote the continuum set of the points in the edges of T . Each subgraph of T is also viewed as a
subset of A(T ). The edge lengths induce a distance function on A(T ) that associates to each pair of points x and y in A(T )
(i.e., vertices or points in the interior of an edge) a distance d(x, y) corresponding to the length of the (unique) path P(x, y)
from x to y. Therefore, A(T ) is a metric space with respect to such a distance function [24]. In the following, we avoid to
specify one or both endpoints of a path when it is not necessary. When T is rooted at a vertex r it is denoted by Tr . We
denote by V (Tr) the set of vertices of Tr . For any vertex v, let Tv be the subtree of Tr rooted at vertex v, S(v) the set of the
children of v in Tr , and p(v) the father of v in Tr . Clearly, a vertex v is a leaf if and only if |S(v)| = 0. A path P is discrete if both
its endpoints are vertices of T , otherwise it is continuous. We denote by V (P) the set of vertices belonging to P , and d(u, P)
the distance from a vertex u to a path P , that is, the length of the shortest path from u to a vertex or an endpoint of P .

Given a weighted tree T = (V , E), the 2 Unreliable Median Paths (2UMP) problem consists of locating in T two path-
shaped facilities, P 1 and P 2, each characterized by a given probability of disruption, say, p1 and p2, respectively. For a given
location of the two facilities, that we denote by L = {L(P 1), L(P 2)}, a client v is first associated to its closest facility, but,
in case of disruption, he/she is re-directed to the other one, and, if this also fails (meaning that no operating facilities are
available to serve client v), a fixed positive penalty is applied in order to take into account the cost for the dissatisfaction of
client v. For each vertex v ∈ V , let 0 ≤ hv ≤ 1 be a weight representing the fraction of the total population in v, and βv be
the fixed non negative penalty to be paid when v is not served. Since βv is considered as the cost to serve a client in v from a
facility outside the network when all the located facilities fail, we impose βv ≥ maxu∈V d(u, v). Problem 2UMP is a natural
extension to path-shaped facilities of the problem studied in [9] for locating two point facilities.
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Fig. 1. An example where an optimal solution of 2UMP does not exist when intersection between paths is not allowed.

We denote by Lv
k , with k = 1, 2, the location of the k-th closest facility to v, so that, if, for example, for a vertex v, P 2 is

the closest facility and P 1 the second closest, one has Lv
1 = L(P 2) and Lv

2 = L(P 1).
To evaluate the general objective function for a given path location L, for each vertex v inV , we compute the total expected

weighted cost to serve v with L:

Zv[L] = hv


d(v, Lv

1) (1 − pLv1 ) + d(v, Lv
2) pLv1 (1 − pLv2 )


+ hvpLv1pLv2 βv. (1)

Then, the objective function of 2UMP is

Z[L] =


v∈V

hv


d(v, Lv

1) (1 − pLv1 ) + d(v, Lv
2) pLv1 (1 − pLv2 )


+


v∈V

hvpLv1pLv2 βv (2)

and the problem can be stated as follows: find in T a location L of two path-shaped facilities P 1 and P 2 such that (2) is
minimized.

The key-aspect in the above 2UMPproblem is that, for each client v, the distance function induces a complete order≺v on
the set of the two facilities stating which facility is assigned to v first, i.e.,P 1

≺v P 2 if and only if d(v, L(P 1)) < d(v, L(P 2)).
When the two facilities are equidistant from v the tie can be broken arbitrarily, but, since for the computation of the objective
function we need to distinguish which facility is assigned to v for first, in the rest of the paper we will assume that when
d(v, L(P 1)) = d(v, L(P 2)), the first facility for v is always the one with lower probability of disruption, and, if this still
produces a tie, we establish that the first facility for v is P 1.

3. Basic properties and problem structure

As widely discussed in [9], in location of unreliable facilities a main issue is co-location which for the point location
problem corresponds to the possibility of locating different facilities at the same point of the network. Extending this
notion to path-shaped facilities means that the two optimal (different) co-located facilities correspond to the same path.
However, in path location an additional aspect must be discussed related to the possibility that the two optimal paths may
partially intersect. Actually, the possibility of intersection between the two located paths leads to some important issues
characterizing the structure of the problem. We provide a first remark related to the existence of solutions for 2UMP.

Remark 1. When intersection between paths is not allowed, the optimal solution of 2UMP may not exist.

Consider the tree T shown in Fig. 1 with five vertices, a, b, c, d and e. Suppose that all edge lengths are equal to 1, and
ha = hb = hc = hd = he =

1
5 . Consider the two disjoint paths Pad and Px(ε)b where x(ε) is a point along edge (e, b) located

at distance ε > 0 from vertex e. Consider the location of facility P 1 in Pad and facility P 2 in Px(ε)b, i.e., Pad = L(P 1) and
Px(ε)b = L(P 2), with the corresponding objective function value given by:

Zε
[L] =

1
5

p1(1 − p2) [3 + 4ε] +
1
5

(1 − p1)(1 + p2) +
1
5

p1p2[βa + βb + βc + βd + βe]. (3)

When ε → 0, Zε
[L] decreases but it never reaches its infimum if the intersection between Pad and Px(ε)b is forbidden.

On the other hand, if the intersection is allowed, an optimal solution of the above problem is given by L∗(P 1) = Pad and
L∗(P 2) = Pcb with objective function value

Z[L∗
] =

2
5

p1(1 − p2) +
2
5

p2(1 − p1) +
1
5
p1p2[βa + βb + βc + βd + βe]. (4)



64 J. Puerto et al. / Discrete Optimization 12 (2014) 61–72

This example shows that there are some instances of 2UMP that, when the intersection between paths is not allowed,
are not well defined, implying that the optimal solution of 2UMP might not exist. Therefore, we allow intersections and
consider the case of pairs of optimal paths that intersect as a third possibility to be added to the cases of disjoint and co-
located optimal paths.

The example also shows that the intersection between the two optimal paths does not necessarily imply that they are
also co-located. In fact, if in the example we restrict ourselves to co-located paths, the best solution corresponds to any pair
of paths L̄ connecting two tips of T , and its objective function value is worse than the one of L∗. Indeed,

Z[L̄] =
2
5

p1(1 − p2) +
2
5

(1 − p1) +
1
5
p1p2[βa + βb + βc + βd + βe] > Z[L∗

]. (5)

The following proposition states other desirable properties of optimal paths for 2UMP.

Proposition 1. In an optimal solution of 2UMP the two optimal paths always connect two leaves of T .

Proof. We start by proving that in an optimal solution of 2UMP the two optimal paths are always discrete. Let us consider
the following situation. Let L(P 1) = P(u, v) and L(P 2) = P(x, d) be the paths where the two facilities P 1 and P 2 are
located, and assume that u, v and d are vertices of T , while the other endpoint x belongs to the interior of an edge (a, b).
W.l.o.g., we assume that vertex b ∈ V (P(x, d)). For P 2, we evaluate the possibility of replacing P(x, d) by the discrete path
P(a, d). For a vertex z in T , two cases may arise: (i) the order induced by the distance function on the set of the two facilities
for client z does not change when P(a, d) replaces P(x, d); (ii) P(x, d) was the second closest facility for z, but, after the
replacement, P(a, d) becomes the first one. The only relevant case is (ii). In fact, in case (i), P(a, d) provides a better solution
than P(x, d), since for a client z either no distance changes or the expected cost of z strictly decreases. In particular, we
observe that the second situation holds at least for one of the clients. For example, the expected cost of a strictly decreases,
since the distance from a to P(a, d) is zero.

In case (ii), one has d(z, a) < minw∈V (P(x,d)) d(z, w) and d(z, P(x, d)) = d(z, a)+ d(a, x). For client z the following holds:

d(z, P(u, v)) ≤ d(z, P(x, d)) and d(z, P(u, v)) > d(z, a) = d(z, P(a, d)).

The cost to serve z when Lz1 = P(u, v) and Lz2 = P(x, d) is:

hzd(z, P(u, v))(1 − p1) + hzd(z, P(x, d))p1(1 − p2) + hzp1p2βz (6)

while, when Lz1 = P(a, d) and Lz2 = P(u, v), it is:

hzd(z, P(a, d))(1 − p2) + hzd(z, P(u, v))p2(1 − p1) + hzp1p2βz . (7)

The difference between (6) and (7) is

hz[d(z, P(u, v)) − d(z, a)](1 − p1)(1 − p2) + hzd(a, x)p1(1 − p2) > 0,

showing that the objective function (2) strictly decreases when facility P 2 is located in the discrete path P(a, d) instead of
in P(x, d). We observe that, when more than one endpoint of the two paths P(u, v) and P(x, d) are not vertices of T , we
can apply the same above arguments independently to each of them to show that one can always enlarge the two paths
and find two discrete paths for the location of P 1 and P 2 with a lower total expected cost. The above discussion implies
that, whenever in a solution of 2UMP we have a path P(x, d) for which at least one endpoint x is in the interior of an edge
(a, b), with b ∈ V (P(x, d)), we can always improve on the expected cost of the solution by enlarging P(x, d) up to vertex a.
It follows that, optimal paths for 2UMP always connect two leaves of T , and this completes the proof. �

4. Some complexity results on locating multiple unreliable facilities

In this section we discuss the computational complexity of the problem of locating K ≥ 1 path-shaped facilities
characterized by a probability of failure, on general networks and on special classes of graphs. We also analyze the closely
related problem of locating one or more paths with the additional constraint that they must be vertex disjoint. As we will
see, this will provide insights on the computational complexity of the problem of locating K ≥ 2 vertex disjoint paths
minimizing the sum of the distances (with and without reliability issues).

We start by observing that on general graphs 2UMP is NP-Hard since it contains as a special case the (classical) median
path location problem (i.e., the problem of locating one path on a graph minimizing the sum of the distances [25]). In fact,
when p1 = 0 and p2 = 1 or vice versa, 2UMP corresponds to the location of the unique operating facility (a single path). This
negative result can be further specialized. In fact, the proof of the NP-Completeness of finding a median path on a network
is based on a reduction from the Hamiltonian path problem. Since the latter problem is NP-Hard even on the very simple
class of planar cubic 3-connected graphs [26,27], it can be shown that the median path problem is NP-Hard on the same
class, and therefore this holds for 2UMP, too. At present, this is the strongest complexity result related to our reliable path
location problem.

Let us now consider the problem of locating K ≥ 2 vertex disjoint paths minimizing the sum of the distances. We observe
that, when K = 2, this problem is again a special case of 2UMP. Actually, assume p1 = 0 and p2 = 0; then, for a given
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Fig. 2. The cactus graphs used in the NP-Completeness proof of Problem 1.

path location L, the total expected weighted cost function (1) simply returns the cost of assigning a vertex v ∈ V to its
closest facility between P 1 and P 2, and thus, the total objective function (2) computes exactly the sum of the distances
of all the vertices v ∈ V to their closest path. In view of this close relation between 2UMP and the problem of locating
two or more vertex disjoint median path-shaped facilities on networks, it is worth studying the complexity of the latter
problem on general networks and trying to specialize and update the current computational complexity results. In [28] it
is shown that the problem of finding K ≥ 2 vertex disjoints median paths, for fixed K , is NP-Hard in arbitrary graphs by
a reduction from the Covering by K Paths problem, according to which, given a graph G, one must decide whether there
exists a set of K vertex disjoint paths covering all the vertices of G (i.e., each vertex belongs to exactly one path in the set).
This result can be strengthened by taking into account that in [28] Covering by K Paths is proved to be NP-Hard on general
graphs by a transformation from the Hamiltonian path problem. Since the latter problem is NP-Hard on planar, cubic, 3-
connected graphs, referring to the reduction proposed in [28, see, p. 550, Fig. 5], we note that Covering by K paths remains
NP-Hard on planar graphs with vertex degree at most 4 for K = 2, and at most K + 1 for K ≥ 3. This implies that also the
problem of locating two vertex disjoint median paths remains NP-Hard on planar graphs with vertex degree at most 4. In
the literature, the K = 2 vertex disjoint median path location problem was only solved on tree networks via a O(n) time
dynamic programming algorithm [29,30]. In [30] the authors also provide an algorithm for locating K > 2 paths in O(nK−1)
time.

All the results reported above do not consider the case when there is also a bound on the total length (or cost) of the
located paths. When K ≥ 2, the total length is given by the sum of all the lengths of the edges of the K located paths. In
the following we provide some new results on the complexity of solving the problem of locating K ≥ 1 median paths with
bounded length on networks also under the unreliability condition.

First, let us consider the case K = 1. It is known that the problem of locating a median path of length at most ℓ is NP-
Complete on the simple classes of cactus and grid graphs [31–33]. We observe that this problem remains NP-Complete on
cactus even if we remove the constraint on the length, but require the paths to have sum of the distances exactly equal to a
given value (see, [34]).

When K ≥ 2 the problem becomes much more difficult to solve. Actually, if the number K of (vertex disjoint) paths to
be located is an input variable, the problem is NP-Hard even on tree networks [28]. If K is fixed, the problem is polynomially
solvable on trees although, to the best of our knowledge, no specialized algorithm for this casewas provided in the literature
yet. In the following, we present a new complexity result that could help both in the complexity analysis of the problem
of locating a fixed number K ≥ 2 of disjoint median paths on graphs, and of the 2 unreliable median paths problem under
study. Let us consider the following problem:

Problem 1. Let G = (V , E) be a cactus graph with non negative weights for the vertices and positive lengths (costs) for the
edges. Consider ℓ > 0, a fixed positive value D, and a fixed integer K ≥ 2. Is it possible to find in G a set of K vertex disjoint
paths having sum of the distances at most D and such that the sum of their edge lengths is less than or equal to ℓ?

Theorem 1. Problem 1 is NP-Complete.

Proof. The proof is by reduction from the following Partitionwith disjoint pairs problem that was shown to be NP-complete
in [33]. Given two vectors of integers, (a1, a2, . . . , an) and (b1, b2, . . . , bn), such that

n
i=1

ai +
n

i=1

bi = T .

Partition with disjoint pairs asks for finding a subset of indices S ⊆ {1, 2, . . . , n} such that


i∈S ai +


i∉S bi =
T
2 .

Consider the graph in Fig. 2 where the length of an edge is equal to ai, or bi, i = 1, . . . , n or T .
Assume that the weights on the vertices are all equal to 1, and set D =

T
2 and ℓ = T (K + 5). From a solution of Partition

with disjoint pairs problem we can construct a solution of Problem 1 by finding one path starting from vertex v0 passing
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through vertex vt+1 and ending at one of the vertices vsr , r = 1, 2, . . . , K . Let vsj be the ending vertex of this path, with
j ∈ {1, 2, . . . , K}. The pathmust also pass through the edgeswithweights bi if i ∈ S and ai if i ∉ S. It is easy to verify that this
path has sum of the distances exactly equal to D and length equal to 6T . The other K − 1 vertex disjoint paths correspond to
the paths (vhr , vsr ), with r ∈ {1, 2, . . . , K}, r ≠ j, with total length equal to T (K − 1). Hence, the total cost ℓ of the resulting
K vertex disjoint paths is exactly equal to T (K + 5) with sum of the distances exactly equal to D.

Conversely, consider a solution of Problem 1 that must be formed by K vertex disjoint paths. At least K − 1 paths are
needed to cover all vertices vsj , j = 1, . . . , K . If K − 1 paths are used, then they cannot cover vertex vt and, therefore, the
K -th path must include both vertices v0 and vt . If K paths are used to cover vertices vsj , j = 1, . . . , K , then one of them
must include v0, too, and therefore also vt . In both cases, we refer to the K -th path including v0 as P1, and we observe that
P1 necessarily includes also vertex vn+1. Let S be defined as the subset of indices i in {1, . . . , n} for which both edges with
length bi are in P1. Then P1 must pass through the edges with weights bi if i ∈ S and ai if i ∉ S, since otherwise the sum of
the distances from it alone would be greater than D. Let ℓ0 denote the sum of the lengths of the edges of the K paths, and
D0 denote the sum of the distances to these paths. The following equation derives from the computation of the sum of the
lengths of all the edges in the graph:

ℓ0 + 2D0 + T (K − 1) = T (2K + 5).

In fact, the left-hand side adds the total length of the edges in the K paths to the total length of those edges outside such
paths; on the other hand, the right-hand side of the previous equation sums all the edge lengths of the graph. The above
equation can be reduced to:

ℓ0 + 2D0 = T (K + 6)

which can hold only if D0 = D =
T
2 , and ℓ0 = ℓ = T (K + 5). Hence, the set S provides a solution for Partition with disjoint

pairs problem. Problem 1 is clearly in NP so that it is NP-Complete and this completes the proof. �

Remark 2. In the case of K = 2, the problem remains NP-Complete if we do not consider any constraint on the total length
of the 2 paths, but require that the sum of the distances must be exactly equal to D.

The NP-Completeness result provided in Theorem 1 directly applies to the 2UMP problem with length constraint (when
K = 2 and considering p1 = p2 = 0), implying that 2UMP is NP-Complete on the same class of cactus graphs, as well.

All the complexity results provided in this section lead to the conclusion that locating more than one path is a difficult
problem even on graphs with a very simple structure. The additional unreliability aspect does not help for this task. In view
of this, we focus on trees and, in the following section, we provide an O(n2) algorithm for solving 2UMP on a tree without
length constraint. The case when there is a bound on the length of the path is still an open problem that will be a subject of
our future work.

5. Solution algorithm for the discrete 2UMP

In [9] the problem of locating two facilities in a tree under reliability issues is already addressed for facilities
corresponding to points. The authors show that a ‘‘nodal optimality’’ property holds if co-location is allowed, that, in their
case, corresponds to locating the two facilities at the same point. The solution algorithmproposed is then based on searching
separately for the best co-located solution and the best disjoint one. Here we follow a similar approach for 2UMP, taking
into account that, in our case, the optimal pair of paths may be co-located, or partially intersecting, or vertex-disjoint. We
describe an ad hoc procedure for finding the best pair of intersecting paths in Section 5.1, while, in Section 5.2 we show that
an approach similar to the one in [9] can be adapted to deal with the location of two vertex-disjoint paths.

5.1. Search for intersecting paths for 2UMP

W.l.o.g., we assume that p1 ≤ p2, so that the two facilities P 1 and P 2 are univocally identified by their probabilities of
disruption p1 and p2, respectively, and, as stated before, if a tie occurs for a client v, he/she is assigned to P 1 first.

When the two optimal paths intersect, we distinguish two cases: (i) they intersect in at least one edge (i, j); (ii) they
intersect in exactly one vertex r . We analyze these two cases separately, since they rely on two different solution strategies.

Case (i). Consider an edge (r1, r2) and the two subtrees Tr1 and Tr2 rooted at vertices r1 and r2, respectively (see Fig. 3(a)).
For each edge (r1, r2) we have to find the pair of paths intersecting at least in (r1, r2) that minimizes the total expected
cost (2). We call these paths best paths w.r.t. (r1, r2), and denote by P1

(r1,r2)
and P2

(r1,r2)
the best paths for the location of the

facilities with probability of disruption p1 and p2, respectively. The idea is to construct such paths starting from r1 (resp. r2)
and ending in some leaves of Tr1 (resp. Tr2 ) to find the two branches of P1

(r1,r2)
and P2

(r1,r2)
in Tr1 (resp. Tr2 ). This can be done

by independently visiting top-down the two subtrees Tr1 and Tr2 . We focus our analysis only on Tr1 , the one for Tr2 being
the same. To facilitate the computations, w.l.o.g., we assume that Tr1 is binary, since, otherwise, we can transform it into a
binary tree by applying the linear time procedure provided in [24,35]. Notice that, going down in Tr1 , the branches of the
two paths may share additional vertices and edges up to some vertex v which may be even a leaf.
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Fig. 3. (a) An example of the two subtrees Tr1 and Tr2 of a given tree T . (b) The two branches of P1
(r1,r2) and P2

(r1,r2) in Tr1 assuming hv = 1, ∀v ∈ V . Edges
(3, 5) and (4, 7) have length equal to 2 and 4, respectively. All the other edge lengths are equal to 1. The bold line refers to the path with probability of
disruption p1 , the dashed line refers to the path with probability of disruption p2 (see Appendix A for the computation of the recursive formulas).

For a given node v ∈ V (Tr1) we denote by v1 and v2 its left and right children, respectively. W.l.o.g., when a node v has
only one child, we always consider it as the left child of v.

For a given root r1, we denote by P1
r1 and P2

r1 the two branches of P1
(r1,r2)

and P2
(r1,r2)

in Tr1 . In order to find P1
r1 and P2

r1 , along
with their contribution to the objective function value that we denote by Z[Lr1 ], with Lr1 = {P1

r1 , P
2
r1}, the procedure relies

on the computation of saving functions which, at each vertex v, provide the gain in the objective function (2) that can be
obtained by extending the paths in Tv .

Consider the binary rooted tree Tr1 . In the top-down visit of Tr1 three different situations may arise at a given vertex v:

1. The two paths followed the same track up to vertex v, but they separate after v. Two cases are possible depending on
which path passes through the left and the right child of v, v1 and v2, respectively.

2. The two paths followed the same track up to vertex v and, after v, they proceed together towards either v1, or v2. Also
here we have two cases, depending on towards which child of v the two paths proceed.

3. The two paths followed the same track up to some ancestor of v, but just one of them passes through v into Tv .

To cope with the three above cases, we associate to each vertex v of Tr1 six quantities labeled as follows:

1. Sp1p2∧ (v) is the maximum saving in the objective function when the path with probability of disruption p1 passes through
the left child of v, i.e., vertex v1, ending in a leaf of Tv1 , while the path with probability of disruption p2 passes through
the right child of v, i.e., vertex v2, and ends in a leaf of Tv2 . A similar quantity Sp2p1∧ (v) is defined for the opposite case.

2. Sv1
lq (v) is the maximum saving in the objective function when the two paths proceed together towards v1. A similar
quantity Sv2

q (v) is defined when the two paths proceed together towards v2.
3. BSp1(v) is the maximum saving in the objective function when only the path with probability p1 extends from v up to a

leaf of Tv . The same quantity BSp2(v) is defined for the path with probability p2.

The above quantities can be computed recursively during a bottom-up visit of Tr1 . Let Hv =


u∈V (Tv) hu be the sum of
the weights of vertices in Tv for which the bottom-up computation is well-known and straightforward [36,37].

The quantities BSpi(v), i = 1, 2 can be computed applying the following recursive formulas:

BSpi(v) =


0 if v is a leaf
max{BSpi(v1) + Hv1d(v1, v)(1 − pi); BSpi(v2) + Hv2d(v2, v)(1 − pi)} otherwise. (8)

The quantities S
pipj
∧ (v), i, j = 1, 2, i ≠ j are computed as follows:

S
pipj
∧ (v) =


0 if v is a leaf
Hv1d(v1, v)(1 − pi) + BSpi(v1) + Hv2d(v2, v)(1 − pj) + BSpj(v2) otherwise. (9)

We note that when a vertex v has only one child the above quantities cannot be computed and we set S
pipj
∧ (v) = 0.

The quantities Svi
q (v), i = 1, 2, are determined as follows:

Svi
q (v) =


0 if v is a leaf
Hvid(vi, v)[(1 − p1) + p1(1 − p2)] + MS(vi) otherwise (10)

where

MS(vi) = max{Sp1p2∧ (vi), Sp2p1∧ (vi), S
vi1
q (vi), S

vi2
q (vi)}, (11)

vi
1 and vi

2 being the two children of vi. When a vertex v is a leaf we set Sv1
q (v) = Sv2

q (v) = 0. Furthermore, for v = r1 we do
not computeMS(v) since this quantity is never used.
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The objective function value associated to the pair of best paths P1
(r1,r2)

and P2
(r1,r2)

is then given by:

Z[L(r1,r2)] = Z[Lr1 ] + Z[Lr2 ], (12)

where, for i = 1, 2, one has:

Z[Lri ] =


u∈V (T (ri))

hud(u, ri)[(1 − p1) + p1(1 − p2)] − max{Sp1p2∧ (ri), S
p2p1
∧ (ri), S

v
ri
1

q (ri), S
v
ri
2

q (ri)}, (13)

where v
ri
1 and v

ri
2 are the children of ri.

Among all possible pairs of best paths P1
(r1,r2)

and P2
(r1,r2)

that can be obtained by considering all the different edges (r1, r2)
of T , the best location is given by the pair with the minimum expected service cost (12).

If one wants to provide the structure of the two paths, it suffices to trace back the sequence of choices made in the
bottom-up computation of the above recursive formulas (see Appendix A for an example).

Case (ii). First of all we observe that two paths may intersect in exactly one vertex r if and only if the number of edges
incident to it is greater than or equal to 4, i.e., the degree of r is at least 4. For all such vertices r , consider the tree rooted at r ,
say Tr . Let Tr1 , . . . , Trm , withm ≥ 4, be the subtrees rooted at each child of r . Notice that in each subtree Trk , k = 1, . . . ,m, we
can locate only one branch of either facilities. Thus, in each subtree Trk∪(rk, r), k = 1, . . . ,m, we can compute independently
for the two facilities the branch that minimizes the expected cost for the vertices in Trk w.r.t. that facility.

For each Trk , k = 1, . . . ,m, we assume, w.l.o.g., that it is binary and find the above branches by independently computing
bottom-up from the leaves of Trk to the root rk the recursive quantities BSpi(v), i = 1, 2. After the evaluation of all
Trk ∪ (rk, r), k = 1, . . . ,m, for the root r we have m different pairs of quantities that we denote by BSpirk(r), i = 1, 2, k =

1, . . . ,m.
Then, in order to avoid branches of the two facilities intersecting in an edge (rk, r) for some k, we need to evaluate the 4

largest values for BSp1rk (r) and the 4 largest for BSp2rk (r), k = 1, . . . ,m, and select the two paths intersecting only in vertex r
by choosing, among the above 8 branches, the 4 that pass through 4 different children of r and provide the maximum total
saving Sav(r). The objective function value associated to this solution is given by

Z[Lr ] =


u∈V (Tr )

hud(u, r)[(1 − p1) + p1(1 − p2)] − Sav(r).

5.2. Search of disjoint paths for 2UMP

In this section we discuss the case of a solution given by two vertex-disjoint paths (for short, disjoint 2UMP). As in [9] the
approach developed in this section relies on the following basic observation. Suppose that the optimal solution of 2UMP on
T corresponds to two vertex-disjoint paths L̄ = {L̄(P 1), L̄(P 2)}. Then it is always possible to find in T an edge (i, j) such
that when it is removed from T the following holds for the two generated subtrees Tij and Tji containing vertex i and vertex
j, respectively:

• L̄(P 1) is in Tij and L̄(P 2) is in Tji (or vice versa);
• all the vertices in Tij are closer to L̄(P 1) than to L̄(P 2) and all the vertices in Tji are closer to L̄(P 2) than to L̄(P 1) (or vice

versa).

The idea of the procedure is to find the optimal pair L̄ = {L̄(P 1), L̄(P 2)} by searching for the two paths separately in
the two subtrees Tij and Tji. In order to do this, we follow here an approach similar to the one presented in [9] for the point
location problem and extend the basic results to our 2UMP.

Discarding the constraint that in 2UMP a client must be served first by its closest facility and secondly by the other, one
can state a variant of the 2UMP consisting of searching for an edge (i, j) in T and two vertex-disjoint paths, one located in
Tij and the other in Tji, such that the following objective function is minimized:

F [{L(P 1), L(P 2)}|(i, j)] =


v∈V (Tij)

hv d(v, L(P 1)) (1 − pP 1)

+


v∈V (Tij)

hv d(v, L(P 2)) (1 − pP 2)pP 1 +


v∈V (Tji)

hv d(v, L(P 2)) (1 − pP 2)

+


v∈V (Tji)

hv d(v, L(P 1)) (1 − pP 1)pP 2 +


v∈V

hvpP 1pP 2 βv. (14)

The above expression corresponds to force a client in vertex v to be served first by the facility located in the same subtree
where v lies when edge (i, j) is removed. Thus, the optimization problem is: min(i,j)∈E F [(i, j)], where

F [(i, j)] := min
L(P1)∈Tij
L(P2)∈Tji

F [{L(P 1), L(P 2)}|(i, j)]. (15)
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Problem (15) is different from 2UMP because here the customer’s first facility is not necessarily the closest to him/her.
Actually, for a given edge (i, j), it corresponds to 2UMP with the additional restriction imposing that for each customer
v ∈ Tij the first facility is the one located in Tij, and for a customer vertex u in Tji the first facility is the one located in Tji. We
refer to this problem as restricted 2UMPw.r.t. (i, j). However, one can show that in the optimal solution of problem (15) with
objective function F [(i, j)] the located paths coincidewith the optimal paths for 2UMP, provided that the optimal solution of
2UMP is given by two vertex-disjoint paths belonging to the two subtrees induced by the removal of edge (i, j). This result
follows by a direct generalization of Theorem 5 in [9] presented below (we do not report the proof since it is basically the
same as the one of Theorem 5 in [9]).

Theorem 2. Let L̄ = {L̄(P 1), L̄(P 2)} be a pair of vertex-disjoint paths corresponding to an optimal solution to 2UMP. Let (i∗, j∗)
be the edge that minimizes F [(i, j)] and L∗

= {L∗(P 1), L∗(P 2)} be the two paths minimizing F [{L(P 1), L(P 2)}|(i∗, j∗)].
Then one has Z[L̄] = F [{L∗(P 1), L∗(P 2)}|(i∗, j∗)] = Z[L∗

].

The idea underlying the proof of the above theorem is that any optimal solution L̄ = {L̄(P 1), L̄(P 2)} for the disjoint
2UMP in a tree T can be univocally associated to an edge (ī, j̄) of T , and, therefore, to a specific ordering of the two facilities
w.r.t. each customer vertex. Relying on this, it can be shown that solving disjoint 2UMP is equivalent to problem (15).

Notice that, for any fixed edge (i, j), the above ordering is forced in the optimal solution of the corresponding restricted
2UMP w.r.t. (i, j). Then, for a customer vertex v in Tij his/her first facility will be necessarily the one located on path P 1 in
Tij, and the distance from v to P 2 in Tji will depend only on d(v, j). Similarly, for a customer vertex u in Tji w.r.t. P 2 and
P 1, respectively. This implies that for a fixed (i, j), P 1 and P 2 can be located independently as median paths in Tij and Tji,
respectively.

After Theorem2,we can find the optimal disjoint 2UMPby repeatedly removing an edge of the tree T and locating the two
optimal paths w.r.t. (15). As in [9], this can be done provided that the vertex weights of each subtree are suitably adjusted
(see Appendix B).

To conclude this section, we summarize the whole procedure to solve 2UMP which we call ALGORITHM 2UMP.
ALGORITHM 2UMP

1. For each edge (r1, r2) of T
1.1 transform the two subtrees Tri , i = 1, 2, into binary trees rooted at ri
1.2 compute Z[L(r1,r2)] and find the corresponding pair of paths P1

(r1,r2)
and P2

(r1,r2)
.

2. For each vertex r with degree at least 4
2.1 root T at r
2.2 transform into binary trees the subtrees Trk , k = 1, . . . ,m, rooted at them children of r
2.3 compute Z[Lr ] and find the corresponding pair of paths intersecting only in r .

3. Among all the pair of paths obtained above, choose the best pair w.r.t. the total expected cost (2), say (P ′

1, P
′

2).
4. For each edge (i, j) of T

4.1 compute the adjusted weights of the vertices in Tij and in Tji
4.2 find the median paths in Tij and in Tji, and denote them by (Pij, Pji).

5. Among the pairs (Pij, Pji), for all edges (i, j), choose the best pair w.r.t. (2), and denote it by (P̄ij, P̄ji).
6. Choose the best solution between (P ′

1, P
′

2) and (P̄ij, P̄ji).

Theorem 3. For a given weighted tree T with n vertices, Problem 2UMP can be solved in O(n2) time.

Proof. Transforming a tree Tri into a binary tree requires O(|V (Tri)|) time by applying the procedure in [24,35]. Thus, both
Steps 1.1 and 2.2 can be performed in O(n) time. The quantities (8)–(10), can be computed in O(n) time by visiting a rooted
tree bottom-up, so that finding the best pair (P ′

1, P
′

2) along with its objective function value takes O(n2) time. For solving
disjoint 2UMP, after the removal of an edge (i, j), the adjusted vertexweights and themedian paths in Tij and Tji can be found
in linear time. Thus, also finding the optimal pair of vertex disjoint paths (P̄ij, P̄ji) requires O(n2) time.

6. Conclusions

We studied the problem of locating two path-shaped facilities that minimize the total expected service cost in a model
where it is assumed that the paths may become unavailable with disruption probabilities that are known in advance. We
showed that the problem is NP-Hard on very simple classes of planar graphs, while we provided a O(n2) time complexity
algorithm for solving it on tree networks. Generalizing to a greater number of facilities, we point out that, under the
additional constraint that the paths to be located must be vertex-disjoint, an analysis similar to the one followed in this
paper to solve 2UMP can be applied also to solve 3UMP in O(n3) time. More generally, the K unreliable median vertex-
disjoint paths problem with K > 2 can be still solved with the same approach, provided that K is considered as a fixed
parameter.
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Table 1
Computation of quantities (8) and (9) for the two branches of the optimal paths in Tr1 for the example shown in
Fig. 3.

v BSpi (v), i = 1, 2 S
pipj
∧ (v), i, j = 1, 2 i ≠ j

r1 max{12(1 − pi); (1 − pi)} 12(1 − pi) + (1 − pj)
1 max{5(1 − pi); 6(1 − pi)} 5(1 − pi) + 6(1 − pj)
2 0 0
3 max{2(1 − pi); (1 − pi)} 2(1 − pi) + (1 − pj)
4 4(1 − pi) 0
5 0 0
6 0 0
7 0 0

Table 2
Computation of quantities (10) for the two branches of the optimal paths in Tr1 for the example shown in Fig. 3.

v Sv1
q (v) Sv2

q (v)

r1 6[(1 − p1) + p1(1 − p2)] + MS(1) [(1 − p1) + p1(1 − p2)]
1 3[(1 − p1) + p1(1 − p2)] + MS(3) 2[(1 − p1) + p1(1 − p2)]
2 0 0
3 2[(1 − p1) + p1(1 − p2)] [(1 − p1) + p1(1 − p2)]
4 4[(1 − p1) + p1(1 − p2)] 4[(1 − p1) + p1(1 − p2)]
5 0 0
6 0 0
7 0 0

Table 3
Computation of quantities (11) for the example shown in Fig. 3.

v MS(v)

r1 –
1 max{5(1− p1)+6(1− p2); 5(1− p2)+6(1− p1); S

v1
q (1); Sv2

q (1)}
2 0
3 max{(1 − p1) + 2(1 − p2); (1 − p2) + 2(1 − p1); 0; 0}
4 0
5 0
6 0
7 0
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Appendix A

We refer to the tree in Fig. 3 to show the computation of the branches in Tr1 of the two paths P1
(r1,r2)

and P2
(r1,r2)

. Tables 1–3
reports the computation of the recursive quantities (8)–(10) w.r.t. generic values for p1 and p2. To complete the example,
we assume that p1 = 0.5 and p2 = 0.6, so that the two branches in Tr1 correspond to those shown in Fig. 3(b). In particular,
we have Z[Lr1 ] = 13.3 − max{6.4; 5.3; 9.2; 0.7} = 4.1.

Appendix B

Let us consider edge (i, j) and the two subtrees Tij and Tji. Assuming that the facility P 1 is located in Tij and P 2 in Tji, the
objective function (14) is

v∈V (Tij)

hv d(v, L(P 1)) (1 − pP 1) +


v∈V (Tij)

hv d(v, L(P 2)) (1 − pP 2)pP 1

+


v∈V (Tji)

hv d(v, L(P 2)) (1 − pP 2) +


v∈V (Tji)

hv d(v, L(P 1)) (1 − pP 1)pP 2 +


v∈V

hvpP 1pP 2 βv. (16)
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The distance d(v, L(P 2)) of a vertex v ∈ V (Tij) can be written as

d(v, L(P 2)) = d(v, i) + d(i, j) + d(j, L(P 2)).

Then, the second sum in formula (16) can be re-written as
v∈V (Tij)

hv [d(v, i) + d(i, j) + d(j, L(P 2))] (1 − pP 2)pP 1 ,

where it is clear that only the distance d(j, L(P 2)) depends on the location of P 2 in Tji. The same can be done for the fourth
sum in (16). Then, collecting all the terms that depend on the location of the two facilities, formula (16) becomes:

v∈V (Tij)

hv d(v, L(P 1)) (1 − pP 1) +


d(j, L(P 2)) (1 − pP 2)pP 1


v∈V (Tij)

hv



+


v∈V (Tji)

hv d(v, L(P 2)) (1 − pP 2) +


d(i, L(P 1)) (1 − pP 1)pP 2


v∈V (Tji)

hv


+ C[i, j] (17)

where C[i, j] is a constant including all terms independent of the facility locations (see also [9]). The adjusted weights for
the vertices of T that must be computed at step 4.1 of ALGORITHM 2UMP are the following:

h′

v =



hv (1 − pP 1), ∀v ∈ Tij, v ≠ i
hv (1 − pP 2), ∀v ∈ Tji, v ≠ j

(1 − pP 1)


hi +


v∈V (Tji)

hv pP 2


, v = i

(1 − pP 2)


hj +


v∈V (Tij)

hv pP 1


, v = j.

(18)

Therefore, as in [9], we can re-write (17) as
v∈V (Tij)

h′

v d(v, L(P 1)) +


v∈V (Tji)

h′

v d(v, L(P 2)) + C[i, j] (19)

so that minimizing (19) actually corresponds to minimizing the sum of the weighted distances in the two subtrees Tij and
Tji, separately.
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